

Влияние приповерхностной турбулентности на вертикальный обмен в верхнем квазиоднородном слое по измерениям на подспутниковом полигоне ФИЦ МГИ

Коржуев Владимир Алексеевич

Морской гидрофизический институт РАН, г. Севастополь, 2022

- описание вертикальной структуры бароклинного океана является сложной и актуальной задачей для современной океанографии;
- сложность учета турбулентных процессов при моделировании верхнего квазиоднородного слоя (ВКС);
- глобальные климатические модели показывают значительные ошибки оценки глубины ВКС;
- существует необходимость создания общепринятой методики оценки влияния турбулентности на перемешивание верхних слоев океана.

Работа выполнена в рамках государственного задания FNNN-2021-0010 при поддержке гранта РНФ №22-17-00150.

Актуальность

[Belcher, S. E., et al. 2012]

Расхождения данных моделирования глобальной климатической модели *HadGEM3*.

Глубина ВКС: июнь, июль, август

0

90E

180

45S

90S

180

90W

На картах представлены расхождения данных моделирования глобальной климатической модели с данными буёв Argo. Подразумевается, что ошибки возникают по причине не учета турбулентных процессов и ленгмюровского перемешивания.

Ошибка температуры ВКС, °С

- изучить динамику верхнего квазиоднородного слоя в условиях механического перемешивания;
- оценить вклад турбулентности и теплового обмена океанатмосфера в заглубление (повышение) верхней границы сезонного термоклина (СТ);
- использовать одномерную модель сезонного термоклина Крауса-Тёрнера совместно с моделью турбулентности для приповерхностного слоя моря;
- провести верификацию модели с использованием натурных данных.

Сбор данных

- сбор данных производился на стационарной океанографической платформе в п.г.т. Кацивели;
- параметры волнения регистрировались с помощью струнного волнографа;
- профили температуры регистрировались термопрофилемером;
- составляющие теплового баланса рассчитывались с помощью метеоданных (скорость ветра, влажность, температура) предоставленных сотрудниками отдела океанографии Морского гидрофизического института.

Расположение стационарной океанографической платформы относительно берега

Многомасштабная модель турбулентности для верхнего перемешанного слоя и оценка интенсивности турбулентности по натурным измерениям [Чухарев, 2013.]

Механизмы генерация турбулентности: 1) С прид систе сти: D^{T}

- 1) Сдвиг скорости, P^{τ}
- 2) Нелинейность поверхностных волн, P^w
- 3) Обрушение поверхностных волн, *P^{br}*

Используемые измерительные комплексы

$$P^{\tau} = -\frac{u_*^2}{\kappa} \left(\frac{dU}{dz} \right)$$

$$P^{W} = \sigma_W u_* \frac{d}{dz} E_W$$

$$P^{br} = C_{Br} \frac{u_0^3}{b_0} \left(1 + C_j \frac{z}{b_0} \right)^{-2.8}$$

$$\Rightarrow G = \frac{1}{g\alpha} \int_0^h [P^{\tau}(z) + P^W(z) + qP^{br}(z)]$$

Задача сводится к определению параметра h – положению верхней границы сезонного термоклина

$$\begin{cases} \frac{dT_s}{dt} = \frac{2}{h^2} \left[(S+B)h - \left(G + \frac{S}{\beta}\right) \right] \\ \Lambda \frac{dh}{dt} = \frac{1}{(T_s - T_h)h} \left[2\left(G + \frac{S}{\beta}\right) - (S+B)h \right] \end{cases}$$

T_s	Температура поверхности
T_h	Температура на измеряемом горизонте
h	Глубина перемешанного слоя
S	Приток тепла в слой
В	Потери энергии
β	Масштабный коэффициент
G	Механическая энергия ветра
Λ	Единичная функция Хевисайда

$$\Lambda \equiv \Lambda \left(\frac{dh}{dt}\right) = \frac{1}{0} \qquad \partial \pi \qquad \frac{dh}{dt} \ge 0$$

$$G = \frac{1}{g\alpha} \int_0^h [P^{\tau}(z) + P^{W}(z) + qP^{br}(z)]$$

Тепловой баланс

Проникающий компонент солнечной радиации S считается основным источником притока тепла в слой:

 $S = q_{rad}$

Потери тепла в результате взаимодействия с атмосферой В определяются выражением:

$$\mathbf{B} = q_{eff} + q_{vap} + q_{turb}$$

- q_{eff} эффективное излучение поверхности моря;
- *q_{vap}* потери тепла за счет испарения;
- *q_{turb}* контактный турбулентный теплообмен с атмосферой.

Анализ данных

Проанализированы данные термопрофилемера за 4 месяца измерений.

[Гайский П.В.]

Пример профиля температуры:

Анализ данных

Механическая энергия волнения оценивается с помощью энергетического спектра волнения, он представляется монохромным относительно частоты спектрального пика.

Примеры полученных энергетических спектров

Сопоставление модельных и экспериментальных данных

Красная линия – модельная кривая, соответствующая положению верхней границы сезонного термоклина.

Коэффициент корреляции	0.7
Коэффициент детерминации	0.49

Скорость ветра и роза ветров, соответствующие периоду измерений

Средняя скорость ветра	8.5 м/с
------------------------	---------

Сопоставление модельных и экспериментальных данных

Черная линия – модельная кривая, соответствующая положению верхней границы сезонного термоклина.

Коэффициент	0.94
корреляции	
Коэффициент	0.89
детерминации	

измерений

Средняя скорость ветра	11.1 м/с

Сопоставление модельных и экспериментальных данных

Черная линия – модельная кривая, соответствующая положению верхней границы сезонного термоклина.

Коэффициент корреляции	0.71
Коэффициент детерминации	0.5

- Проведена оценка корреляции величин, оказывающих влияние на динамику перемешанного слоя, получены коэффициенты корреляции от 0.7 до 0.94.
- Отсутствие на данный момент общепринятого метода расчета вклада волнения в турбулизацию снижает объективность модельных расчетов;
- Расхождение наблюдений с модельными расчетами повидимому, вызвано влиянием неучтенных факторов, в частности, динамикой локальных течений в прибрежной зоне;
- Применение модели Крауса-Тёрнера, дополненной многомасштабной моделью турбулентности, для исследования динамики верхнего квазиоднородного слоя может быть оценено удовлетворительно.

Благодарю за внимание

@VOYTILOCHECHLOB